The Thomson Effect and the Ideal Equation on Thermoelectric Coolers

نویسنده

  • HoSung Lee
چکیده

The formulation of the classical basic equations for a thermoelectric cooler from the Thomson relations to the non-linear differential equation with Onsager’s reciprocal relations was performed to basically study the Thomson effect in conjunction with the ideal equation. The ideal equation is obtained when the Thomson coefficient is assumed to be zero. The exact solutions derived for a commercial thermoelectric cooler module provided the temperature distributions including the Thomson effect. The positive Thomson coefficient led to a slight improvement on the performance of the thermoelectric device while the negative Thomson coefficient led to a slight declination of the performance. The comparison between the exact solutions and the ideal equation on the cooling power and the coefficient of performance over a wide range of temperature differences showed close agreement. In conclusion, the Thomson effect is small for typical commercial thermoelectric coolers and the ideal equation effectively predicts the performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coefficient of Performance Optimization of a Single Stage Thermoelectric Cooler

In thermoelectric coolers (TECs) applied external voltage potential is generated to a temperature difference based on the Peltier effect. Main and basic structure of TECs is in the form of single stage device. Due to the low efficiency, especially low coefficient of performance (COP) of thermoelectric coolers, optimal design of geometrical parameters of such devices is vital. For this purpose, ...

متن کامل

A Correlation for the Prediction of the Adiabatic Joule-Thomson Coefficient of Pure Gases and Gas Mixtures

A correlation based on the general form of cubic equations of state has been derived. This equation provides a convenient mathematical form of the Joule-Thomson coefficient in terms of the state variable V and T. The Joule-Thomson coefficient calculated by this correlation has been compared with experimental data. It has been shown that the Redilich-Kwang equation of state is a suitable equ...

متن کامل

Performance of Thermoelectric Coolers with Boundary Resistance for Different Optimization Criteria

The cooling capacity, efficiency and cooling flux for a single stage thermoelectric cooler, as part of a multistage cooler, is analyzed in this study. The Lagrange Multiplier method is used to develop nonlinear algebraic equations for the optimum condition for different objective functions. The analysis includes the effect of heat leak, thermal boundary resistances with thermal reservoirs and t...

متن کامل

MODELING AND OPTIMIZATION OF SINGLE-ELEMENT BULK SiGe THIN-FILM COOLERS

Modeling and optimization of bulk SiGe thin-film coolers are described. Thin-film coolers can provide large cooling power densities compared to commercial thermoelectrics. Thin-film SiGe coolers have been demonstrated with maximum cooling of 4◦C at room temperature and with cooling power density exceeding 500 W/cm2. Important parameters in the design of such coolers are investigated theoretical...

متن کامل

On-chip Hot Spot Remediation with Miniaturized Thermoelectric Coolers

The rapid emergence of nanoelectronics, with the consequent rise in transistor density and switching speed, has led to a steep increase in chip heat flux and growing concern over the emergence of onchip “hot spots” in microprocessors, along with such high flux regions in power electronic chips and LED’s. Miniaturized thermoelectric coolers (μ-TEC’s) are a most promising cooling technique for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015